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Abstract. This paper represents an empirical investigation of the “weak” and “strong” Porter 
Hypothesis (PH) focusing on the manufacturing sectors of European countries between 1997 and 
2009. By and large, the literature has analyzed the impact of environmental regulation on innovation 
and on productivity generally in separate analyses and mostly focusing on the USA. The few existing 
studies focusing on Europe investigate the effect of environmental regulation either on green 
innovation or on performance indicators such as exports. We instead look at overall innovation and 
productivity impact that are the most relevant indicators for the “strong” PH. This approach allows us 
to account for potential opportunity costs of induced innovations. As a proxy of environmental policy 
stringency we use pollution abatement and control expenditures (PACE), which represent one of the 
few indicators available at the sectoral level. We remedy upon  its main drawback, that of potential 
endogeneity of PACE, by adopting an instrumental variable estimation approach. We find evidence of 
a positive impact of environmental regulation on the output of innovation activity, as proxied by 
patents, thus providing support in favor of the “weak” PH in line with most of the literature. On the 
other front, we find no evidence in favor or against the “strong” PH, as productivity appears to be 
unaffected by the degree of pollution control and abatement efforts. 
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Environmental Regulation and Competitiveness: Empirical Evidence on the 
Porter Hypothesis from European Manufacturing Sectors 
 

1. Introduction  

In this paper we investigate the impact of environmental regulation on the economic performance of 

the European manufacturing sectors. The standard neoclassical view holds that (strict) 

environmental regulation adversely affects productivity and competitiveness by imposing 

constraints on industry behavior. On the one hand, firms face direct costs such as end-of-pipe 

equipment or the R&D investment necessary to modify production activities. On the other hand, 

firms’ budgets are limited due to financial constraints. By committing resources to comply with 

environmental regulation, firms also incur in indirect (opportunity) costs because they cannot invest 

in other profitable endeavors (Ambec, Cohen, Elgie,and Lanoie, 2013). 

Porter (1991) and Porter and Van der Linde (1995) challenged this view. They argued that Well-

crafted and well-enforced regulation would benefit both the environment and the firm. Their theory, 

which is referred to as Porter Hypothesis (PH),  was initially formulated in rather general terms. 

Firms face market imperfections, such as imperfect and asymmetric information, organisational 

inertia or control problems.  Environmental regulation would push firms to overcome some of these 

market failures and to pursue otherwise neglected investment opportunities. The key mechanism in 

this respect is that regulation promotes innovation aimed at lowering the cost of compliance. 

Regulation-induced innovation would increase resource efficiency and product value, offset 

compliance costs and enhance firms’ productivity.  Environmental regulation is thus advertised as a 

“win-win” strategy, leading to better environmental quality and higher firms’ productivity, possibly 

also with respect to firms in foreign countries not subject to similar regulation. 

Since the early 1990s proving or disproving the PH, which has important implications for policy 

making and firms performance,  has been the focus of many empirical contributions (see 

Rubashkina, 2013 for a review). Specifically, the PH has been declined as three possible and distinct 
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research statements (Jaffe and Palmer, 1997). First, the “narrow” version of the PH postulates that 

flexible environmental regulation, such as market-based instruments, increases firms’ incentives to 

innovate compared to prescriptive regulation, such as performance-based or technology-based 

standards. Second, the “weak” version of the PH postulates the positive effect of well-crafted 

environmental regulations on environmental innovations (even when environmental innovation 

comes at an opportunity cost that exceeds its benefits for a firm). Finally, the “strong” PH states that 

innovation induced by well-crafted environmental regulation could more than offset additional 

regulatory costs, and, consequently, increase firm’ s competitiveness and productivity. 

Most of the empirical studies, however, focus on the US, while the evidence for Europe is scant. 

This is particularly troublesome because, given the recent European policy developments, the 

validity of the PH is of great relevance for EU countries. Since the end of 1980s the European 

environmental policy became more stringent.1 Today, integration of environmental protection into 

other EU policies is seen as a necessary step. EU members are committed to both the “Lisbon 

Agenda”, which stresses increased competitiveness, economic growth and job creation, and to the 

“Gothenburg Agenda”, which focuses on sustainable development. Moreover, in light of the 

economic crisis, the concept of “green recovery” (Edenhofer and Stern, 2009) gained the centre 

stage. In this respect, the European Commission argues that environmental policies and increased 

competitiveness are not mutually exclusive, but can indeed strengthen one another (European 

Commission, 2010).  

Since the PH has not been unambiguously (dis)proven, many worry that environmental regulation 

will place an excessive burden on European industries, thereby stifling growth and damaging their 
                                                 
1 An initial commitment to the strategic reorientation of environmental policies in the EU gradually took place since 
1987, with the introduction of the 4th Environment Action Programme (Hey, 2006). Since then, Europe increasingly 
moved away from command-and-control regulation towards the implementation of new market-based instruments. In 
particular, an unprecedented regulatory boom took place starting in 1996. Among the first and most relevant policy 
interventions are the Integrated Pollution Prevention and Control Directive (96/61/EC, 1996), the Ambient Air Quality 
Directive (96/62/EC, 1996), the Water Framework Directive (2000/60/EC, 2000) and the National Emission Ceilings 
Directive (2001/81/EC, 2001). They were followed by the introduction of the EU Emission Trading Scheme (Directive 
2003/87/EC) and by the directives of the 2020 Climate and Energy Package on CO2 emission reduction (2009/29/EC, 
2009) and renewable energy (2009/28/EC, 2009). 
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competitiveness in an increasingly global market place. Testing the link between environmental 

regulation and competitiveness indicators is therefore particularly relevant for Europe, where 

country-specific dynamics is likely to play a big role. While environmental policy initiatives are 

generally drafted at the European level, their implementation still lies with the national governments, 

leading to big countries disparities with respect to the stringency and implementation of such 

policies. 

This paper investigates the PH using cross-country sector-level data for European countries in order 

to assess empirically whether environmental regulation enhances or stifles sectoral innovation and 

productivity. 

We contribute to the literature in several ways. First, we provide a combined assessment of the 

impact of environmental regulation on both innovation and competitiveness in the context of the PH 

for European industries. We thus look at both the “weak” and at the “strong” versions of the PH. 

Previous contributions have focused separately either on the impact of regulation on environmental 

innovation or on competitiveness. When looking at the “weak” PH the focus of previous studies was 

on the environmental regulation impact on energy efficiency and renewable energy innovation; 

when addressing the “strong” PH the proxy for competitiveness was typically represented by exports 

and generally focused on the US. The contributions on the “weak” PH  conclude that environmental 

innovation positively responds to environmental policy. However, they don't explore the impact of 

environmental policy on overall innovation, thereby ignoring issues linked with opportunity costs of 

environmental innovation.   We thus address two important unexplored questions regarding the EU 

manufacturing sectors: (a) we assess  whether environmental policies result in higher environmental 

innovation but at the cost of reducing overall innovation and (b) we focus on the impact of 

environmental policy on the value added in manufacturing. 

Second, we bring together all the recent available data for the EU countries and investigate the PH at 

the sectoral level. With respect to a country-level analysis we can better capture the effects of sector-
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specific environmental policies, on the one hand, and the dynamics of competition that takes place 

within a sector, on the other hand. The only other contribution addressing a similar research question 

is Franco and Marin (2013). We improve on their research by going a great lengths towards 

accounting for the endogeneity of the policy proxy we adopt in our empirical framework.  

Third, we use pollution abatement and control expenditures (PACE henceforth) at the sectoral level 

as an environmental policy indicator. PACE measure the consequence of government environmental 

policies and regulations and include the flow of investment and current expenditures directly aimed 

at pollution abatement and control. Although there is an intense discussion on the pros and cons of 

alternative measures of policy stringency, few are characterized by the property of sectoral 

variability, certainly a plus in the investigation of the PH. Unlike other commonly used proxies of 

environmental policy (Nesta, Vona, and Nicolli, 2014), PACE data provide information on the 

response of each sector to the pressure of environmental policy. It is thus arguably a good candidate 

to measure the different impact of environmental policy on manufacturing sectors. Moreover,  

PACE data were used in the seminal paper by Jaffe and Palmer (1997) in their investigation for US 

sectors: we implement their approach when assessing European industries’ innovation activity. 

Finally, we recognize the potential endogeneity of PACE and implement an instrumental variable 

approach. Only a handful of papers have tackled this important issue: not accounting for the 

endogeneity of environmental policy proxies may lead to biased estimates of the effects of 

environmental regulation  on economic performance. 

The paper proceeds as follows. Section 2 briefly summarizes the literature on the PH. Section 3 

describes the competitiveness indicators and the environmental regulation proxy used in our 

empirical application. Section 4 presents descriptive statistics while the empirical results on the link 

between environmental policy and innovation and competitiveness are presented in Sections 5 and 6, 

respectively. Section 7 concludes and discusses further research avenues. 

 



  

6 
 

2. Related Literature 

The empirical literature investigating the link between environmental regulation and 

competitiveness in the context of the PH is vast, but mostly focused on the US. The first paper to 

look at the relationship between environmental regulation and patent activity is Lanjouw and Mody 

(1996) which looked at the data also for Japan and Germany. No econometric analysis was, however, 

conducted. Formally testing of the innovation impact was first carried out by Jaffe and Palmer 

(1997), who studied how environmental regulation stringency, proxied by PACE, affects overall 

innovation in US manufacturing sectors, proxied by either sector-level R&D expenditures or 

USPTO patents applications. Their results for the period 1973-1991 point to a significant positive 

link between regulation and R&D expenditures, whereas patents are not affected by more stringent 

regulation.  

Several subsequent studies addressed similar questions, mostly focusing on the “weak” PH. Using 

plant-level or sector-level US data they investigated the link between PACE and environmental 

patents (see, for example, Brunnermeier and Cohen, 2003), generally concluding in favor of Porter’s 

idea that environmental regulation spurs environmental innovation. 

Conversely, the results of early studies on the “strong” PH in the US, such as Gray and Shadbegian 

(1993, 2003), concluded that environmental regulation caused a productivity slowdown. The authors 

attributed this to a displacement of “productive” investment by environmental regulation. However, 

these studies investigated the impact of early command-and-control policies in the US and not of 

market-based environmental policy, as implied by the PH in its original form. 

The sector-level analytical framework has been also applied to a handful of other countries. 

Hamamoto (2006) investigated both innovation and productivity responses to environmental 

regulation, proxied by PACE, in Japan. A similar framework and environmental regulation proxy 

was used by Yang, Tseng and Chen (2012) for Taiwan, whereas Lanoie, Patry and Lajeunesse (2008) 
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focus on productivity effects of environmental regulation in Canada. These contributions support the 

previous conclusions on the positive effect of environmental regulation, captured by PACE, on 

innovation and provide some evidence of a positive impact of productivity.  

Only a few studies test the effect of stringent environmental regulation on competitiveness in Europe. 

De Vries and Withagen (2005) focus on SO2 reduction-related innovation and test the “weak” PH at 

the country-level on a sample of twelve European countries plus US and Canada. They use a number 

of environmental regulation proxies, such as dummies indicating the adoption of international 

environmental protocols, an index of Environmental Sensitivity Performance and SO2 emission 

levels. Carrión-Flores and Innes (2010) examine the link between environmental patents and 

emissions, which proxies for environmental policy stringency, using data for 127 manufacturing 

industries over a 16-year period (1989-2004). Johnstone, Hascic and Popp (2010) focused on the 

“weak” PH in the renewable energy sector in twenty-five OECD countries and investigated the 

relation between environmental regulation and patents using various environmental policy adoption 

dummies. Kneller and Manderson (2012) focus on UK manufacturing industries and relate 

innovation, proxied by either R&D or capital investment, to expenditures on end-of-pipe pollution 

control and the operation of pollution control equipment. 

Constantini and Crespi (2008) investigated the “strong” PH in the energy sector of seventeen 

European countries plus Japan, Canada and US. They focus on export effects and employ several 

environmental policy indicators such as PACE, the share of environmental tax in total government 

revenue, CO2 emissions intensities and a ratification dummy of the Kyoto Protocol. Finally, 

Costantini and Mazzanti (2012) extend the investigation of the environmental regulation-export 

nexus to a broad range of manufacturing sectors in the EU-15 using PACE and environmental tax 

share as policy variables. Finally, a very recent contribution by Albrizio and Zipperer (2014) 

considers seventeen OECD countries and consistently finds a significant and positive effect of a 

pollution intensity index on total factor productivity at both sector and firm level. 
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There are aspects to note concerning the EU-based studies just mentioned. First, in many cases they 

are country-level analyses. As a result, they cannot account for heterogeneity in sectoral responses to 

regulation. Sometimes, as in Costantini and Mazzanti (2012), the study does have a sectoral 

dimension, but the environmental regulation variables employed is country-specific and does not 

exhibit any sectoral variation. Second, most studies test the “weak” PH in Europe focus on how 

environmental innovation (such as renewable energy or energy saving patents) responds to 

regulation. They therefore do not test the effect of stringent environmental regulation on total 

manufacturing innovation and performance. Looking only at environmental innovation is 

insufficient, because the opportunity costs of environmental innovation are not accounted for. In fact, 

environmental regulation could cause an increase of environmental innovation, while (more valuable) 

innovation in other fields is not pursued due to budget constraints. Therefore, looking at 

environmental innovation only is a partial way to test the PH. Third, European studies that focus on 

the “strong” PH mostly focus on export effects and do not test how productivity responds to 

stringent environmental policy. And this is allegedly the most controversial statement of the PH. 

Finally, it has been noted that only very few papers in this area recognize the potential endogeneity 

of PACE, unlike many others including Jaffe and Palmer (1997). Exceptions are De Vries and 

Withagen (2005), Carrion-Flores and Innes (2010), and Kneller and Manderson  (2012). Not 

accounting for the endogeneity of environmental policy proxies through an appropriate instrumental 

variable approach may bias estimates of environmental regulation effects on economic 

performance.2 This drawback is also shared by Franco and Marin (2013), a very recent contribution 

that looks at both the impact on innovation and total factor productivity using energy tax intensity 

(energy tax revenues per unit of value added) as a proxy of environmental policy stringency.3   

                                                 
2 Also in the related, large literature on the pollution heaven hypothesis that investigates the impact of environmental 
regulation on the relocation of manufacturing enterprises few papers account for endogeneity of environmental policy 
variables (Xing and Kolstad, 2002; Ederington and Minier, 2003; Levinson and Taylor, 2008). 
3 Their sample covers 13 manufacturing sectors of 7 European countries over the period 2001-2007. Our data are based 
on 7 PACE sectors of  17 European countries  for the years 1997-2009. 



  

9 
 

In this paper we test for the validity of the PH in both its weak and strong versions using data on 

individual manufacturing sectors of European countries. We use data with a wide sectoral and 

country coverage and, in keeping with most of the previous literature, we use sector-level data on 

PACE, a feature not shared by many alternative policy stringency availables. The endogeneity of 

this policy indicator is accounted for and appropriately dealt with. These data have not been 

previously exploited for European country-sectors. 

3. Competitiveness and Environmental Policy Indicators 

The general framework guiding the empirical investigation of the PH in the literature can be 

represented as follows: 

(1)      ),( ZERfC =  

where C is a competitiveness indicator, ER is an environmental regulation stringency variable and Z 

are other control variables. Equation (1) is the basis of our empirical investigation. To operationalize 

it we have to specify the variables with which we capture the notions of competitiveness and of 

environmental policy stringency, together with the controls to introduce. 

Competitiveness C is represented by technological innovation TI in the weak version of the PH and 

by factor productivity FP in the strong version. We describe the proxies we use for these indicators 

in the following subsections. 

3.1 Innovation Proxies 

To test for the impact of environmental regulation on technological innovation, in keeping with Jaffe 

and Palmer (1997) we proxy TI activity using both R&D expenditures and patent statistics. Both 

these proxies have been widely used in the literature (Griliches, 1990). Industrial R&D expenditures 

represent an input of the innovation production function and measure the effort of private firms in 

pursuing innovation. Industrial R&D expenditures expressed in millions of Euro at 2005 prices are 
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taken from the OECD ANBERD database (OECD, 2012).4 We complement this source with data 

from EUROSTAT (EUROSTAT, 2012a) for some missing countries like Bulgaria, Sweden, 

Slovakia and the UK. The data are available for fourteen countries over the period 1998-2009.5 

Conversely, patent statistics approximate the output of the knowledge production function (see, for 

example: Joutz and Gardner, 1996; Johnstone, Hascic, and Popp, 2010). To a certain extent, patent 

applications proxy for the productivity of R&D at the sectoral level. Patent indicators suffer the 

major drawback of greatly differing in quality and in the magnitude of inventive output (Griliches, 

1990). For this reason, we use data on patents applications by inventors to the EPO. EPO application 

data are superior to data from national patent offices, since the difference in costs between a national 

application and an EPO application provides a quality threshold which eliminates low value 

inventions (OECD, 2009).  

Patents statistics are from the EUROSTAT Patent statistics database (EUROSTAT, 2012b).6 Patent 

applications are assigned to a country according to the inventor place of residence, using fractional 

counting if there are multiple inventors. In view of the econometric analysis this implies that patents 

do not have to be treated as a count variable, but data are real-valued continuous observations.  Data 

on sectoral patent applications are available for all EU countries for the period 1977-2009. 

3.2 Productivity Proxies 

To test the impact of environmental regulation on FP we mainly follow Gray and Shadbegian (1993, 

2003) and use Total Factor Productivity (TFP) to proxy for sectoral economic 

                                                 
4 The R&D data from EUROSTAT are originally reported in current Euros, so we deflate them with the 2005 GDP 
deflator. 
5 A concern related to cross-country comparability of the R&D data from the OECD ANBERD database must be noted. 
R&D expenditures are classified by industry according to two different types of criteria: by main activity or by product 
field. For some countries R&D expenditures are calculated by main activity, allocating all R&D expenditures according 
to the principal activity of a firm (though large firms could have important R&D activities in secondary activities). On 
the contrary, for other countries, R&D data are calculated by product field, disaggregating the R&D expenditures of 
diversified firms into different activities. Notwithstanding these differences, we use R&D proxy to provide comparable 
results with previous literature. 
6 EUROSTAT patent data are based on the EPO Worldwide Statistical Patent Database (PATSTAT). The data exclude 
applications to national patent offices of the Member States and Patent Cooperation Treaty (PCT) applications made to 
the EPO that are still in the international phase. 
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performance/competitiveness (see also Albrizio and Zipperer, 2014). TFP shows the time profile of 

how productively combined inputs are used to generate gross output. Although conceptually TFP 

captures technical change, in practice it reflects also efficiency change, economies of scale, 

variations in capacity utilisation and measurement errors (OECD, 2001). 

Following Inklaar and Timmer (2008), to compute our productivity measure we use data from the 

EU KLEMS database (EU KLEMS, 2009) and the WIOD Socio-Economic Accounts database 

(WIOD, 2012). 7 The EU KLEMS database provides Gross Output (GO), Value Added (VA), inputs 

indicators for capital, labor and intermediate inputs to construct TFP levels and growth rates. The 

EU KLEMS database has the advantage of providing capital and labor inputs both in absolute and in 

constant-quality index terms. The latter are obtained by weighting the components of each input by 

their marginal product and allow to account for the wide differences in the productivity of various 

types of labour and assets over time. Using these input indices a quality-adjusted TFP estimate that 

proxies for the disembodied technological progress can be computed. However, the EU KLEMS 

allows to construct the quality-adjusted TFP only in growth terms (due to the specific features of 

adjusted input indices). Moreover, due to bad coverage of capital stock data we were able to 

construct the productivity indicators in absolute terms only for eleven EU countries such as Czech 

Republic, Finland, Hungary, Lithuania, Netherlands, Poland, Portugal, Slovenia, Spain, Sweden and 

the United Kingdom over the period 1997-2007. The productivity indicators in constant quality 

terms are available only for eight countries as the relevant data for Lithuania, Poland and Portugal 

are missing. 

Following the previous literature on the “strong” PH (Gray and Shadbegian, 1993, 2003; Hamamoto, 

2006; Lanoie, Patry and Lajeunesse, 2008), we estimate productivity equations both in levels and in 

growth rates, as there is no a priori guide to the use of levels or growth rates. We employ a “raw” 

                                                 
7 We provide details on the construction of TFP in Appendix C. Here, we only point to some major issues related with 
the computation of TFP which affect our empirical choices. We performed the analysis on the strong PH also using 
labor productivity as a widely used measure of productivity, in addition to TFP. We do not report results due space 
limitations and because we feel that TFP is a more appropriate measure of performance, at least in the present context. 



  

12 
 

TFP indicator that is not adjusted for the inputs’ quality composition, which is available both in 

levels and growth rates for eleven countries of the sample, and a quality-adjusted TFP growth 

indicator, available only in growth rate terms and for eight countries of the sample. 

3.3 Environmental Policy Indicator 

To proxy for environmental regulation we use Pollution abatement and control expenditures (PACE) 

as a policy indicator. There has recently been a surge of interest in measures of environmental policy 

stringency. A few alternatives have been proposed (Brunel and Levinson, 2013; Botta and Kozluk, 

2014; Nesta, Vona, and Nicolli, 2014): none of them is ideal, as each indicator has got pros and cons 

both from a conceptual and a practical perspective (Brunel and Levinson, 2013). The PACE 

indicator has not been previously used in the context of sector-level studies of the PH in Europe and 

is particularly well suited because, unlike other indicators (Nesta, Vona, and Nicolli, 2014), it 

provides information on sector-specific responses to environmental policy. 

PACE are purposeful activities aimed directly at the prevention, reduction and elimination of 

pollution or nuisances arising as a residual of production processes or the consumption of goods and 

services (OECD, 1996). PACE arise as the consequence of government environmental policies and 

regulations and include the flow of investment and current expenditure directly aimed at pollution 

abatement and control.8 PACE data for the EU manufacturing sectors are available for the period 

1997-2009. 

                                                 
8 PACE distinguishes between nine different environmental domains: 1) protection of ambient air and climate, 2) 
wastewater management, 3) waste management, 4) protection and remediation of soil, groundwater and surface water, 5) 
noise and vibration abatement, 6) protection of biodiversity and landscapes, 7) protection against radiation, 8) research 
and development and 9) other environmental protection activities. PACE exclude expenditures on natural resource 
management and several activities, such as the protection of endangered species (fauna and flora), the establishment of 
natural parks and green belts and activities aimed at exploitation of natural resources (e.g., the drinking water supply). 
Other exclusions are expenditures intended either for workplace protection or for the improvement of production process 
for commercial or technical reasons, even when they have environmental benefits. Investment and current expenditure 
that have positive environmental effects without being directly motivated by environmental concerns. For example, 
investments in energy-saving equipment, that are made due to increases in energy prices are excluded. In statistical 
practice, the identification of such expenditure is difficult, particularly in the business sector, where firms may be unable 
to distinguish between the different investment motives. It is difficult to identify when pollution abatement is the actual 
motivation behind less wasteful use of raw materials. Therefore, the measurement of air and water pollution abatement 
expenditures may differ from this baseline. 
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To collect the data on these regulation variables we rely on two sources. When possible we use data 

on “environmental protection expenditures” from EUROSTAT (EUROSTAT, 2012c).9 We then fill 

missing observations with comparable data from various National Statistics Offices (of Cyprus, 

Estonia, Lithuania, Slovenia, Spain, Sweden and United Kingdom). 

PACE is reported in million Euros. We use the sector-specific Producer Price Index (PPI) to convert 

PACE nominal values into constant prices figures.10 There are number of countries that do not report 

PACE data by sectors, namely Denmark, Ireland, Luxembourg, Malta and Italy. Moreover, data for 

Austria, Belgium, France, Germany, Greece, and Latvia contain very few observations. We 

therefore exclude these countries from the analysis. Thus, the PACE data we are going to use in our 

analysis refer to seventeen European countries. It should be noted that also for these countries the 

data have a number of time series gaps. 

4. Descriptive Statistics 

The period of analysis and the country sample have been selected on the basis of the data 

availability of our environmental regulation indicator. Our sample is an unbalanced sector-level 

panel dataset covering 17 European countries – Bulgaria, Cyprus, Czech Republic, Estonia, Finland, 

Hungary, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, 

Sweden and the United Kingdom – for the years 1997-2009. 11 

The level of aggregation by industrial sectors varies across the five different data sources we used to 

collect our variables (EUROSTAT, EU KLEMS, WIOD, OECD STAN and OECD ANBERD). We 

therefore base our analysis on the sectoral classification of the PACE variable, which includes nine 

                                                 
9 When observations for one of the variables are missing for at most one or two sectors within a country-year we restore 
the missing values by taking the difference between total manufacturing and some of the available sectors (only eight 
PACE missing values were recovered using this procedure). 
10 For sectors 2, 6, 8 and 9 we obtain the PPI as a Value Added weighted average of the PPI indices of the 
corresponding 4-digit level sectors. We also interpolated particular PPI missing values by applying the GDP deflator 
growth rate of the last available corresponding PPI value. For countries that do not report PPI such as Cyprus, Estonia, 
Portugal and Slovakia we instead adjust nominal PACE values using the GDP deflator from EUROSTAT. 
11 We exclude the other EU countries as they do not provide the required data on environmental regulation. 
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macro sectors. The classification and the reference to the two-digit European NACE revision 1.1 

sectoral classification are shown in Table 1.12 

[Insert Table 1 about here] 

Table 2 provides summary statistics of the main variables in the overall sample, while Table 3 

provides statistics by country.13  Looking at the competitiveness indicators we note striking 

differences between new and old Member States. In particular, Austria, Belgium, Denmark, Finland, 

Netherlands, Norway, Sweden and the UK have patent and R&D intensities which exceed several 

time those of other countries. The level of TFP is highest in Finland, Slovenia, Sweden and the UK. 

TFP growth is highest in the Czech Republic, Finland, Lithuania and the UK, whereas it is negative 

in Poland and Portugal. Concerning environmental expenditures, an average share of PACE in the 

final sample makes 3.6 percent in Value Added and 0.9 percent in Gross Output. Finland, Portugal, 

Norway, Spain and the UK are behind the other countries in terms of share of environmental 

expenditures in VA (that ranges between 2-3 percent). We can also observe larger environmental 

expenditures in new Member States than in old Member States over the sample period, as the former 

needed to catch up with European legislative requirements in a relatively short period of time (in 

new Member States PACE/VA ranges between 4-6 percent). Among the old Member States Sweden 

and the Netherlands have the highest expenditures for compliance with environmental regulation 

(PACE/VA ranges between 4-5 percent). 

[Insert Table 2 about here] 

[Insert Table 3 about here] 

Table 4 provides descriptive statistics by sector. Some sector, such as sector 5 (“Coke, refined 

petroleum products and nuclear fuel”), sector 6 (“Chemicals; rubber and plastic products”) and 

                                                 
12 Definition, data sources and period of availability of all the main variables used in the present investigation are 
reported in Table A.1 of Appendix A. 
13 We detected 24 outliers with unreasonably high PACE/VA ratio (several observations for Cyprus, Estonia and 
Slovenia) and patents/VA ratio (several observations for Slovenia). These observations were excluded from the sample. 
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sector 9 (“Machinery and equipment”), have patent and R&D intensities which are twice the average. 

Their patent intensity ranges between 19-36 patents per billion of Euro against an average value of 

13 patents per billion of Euro and 4.9-8.2 percent R&D intensity versus an average value of 2.9 

percent. The highest TFP in terms of level is observed in sectors 6 (“Chemicals; rubber and plastic 

products”), 7 (“Other non-metallic mineral products”) and 8 (“Basic metals”). With respect to PACE, 

we observe sizeable differences between the sectors 5 (“Coke, refined petroleum products and 

nuclear fuel”), 6 (“Chemicals; rubber and plastic products”) and 8 (“Basic metals”) that spend more 

on pollution abatement and control activities than an average European sector: their shares of PACE 

in VA are 9.5 percent, 4.0 percent and 6,1 percent, respectively, against an average share of 3.6 

percent. We also notice that these three sectors are characterized by high energy intensity, as 

reported in the last column of Table 4.14 Therefore, energy intensive sectors appear to spend more on 

environmental expenditure regardless of environmental regulation stringency. 

[Insert Table 4 about here] 

5. Environmental Regulation and Innovation Activity: The “Weak” Porter Hypothesis 

We begin our empirical analysis by studying the relationship between environmental regulation and 

innovative activity, while the impact of environmental regulation on productivity is analyzed in 

section 6. 

5.1 Empirical Strategy 

Our starting point is an equation similar to the one originally used in the paper of Jaffe and Palmer 

(1997) adapted to multi-country analysis. The log-log specification relating innovation to 

environmental policy proxies reads as follows:  

(2)    ijtttij
TI
ijtqijtijt OLDZERTI εµµαγβ +++++= −− 1lnlnln  

                                                 
14 Energy intensity is defined as emission-relevant energy use (in TOE, tons of oil equivalent) over VA. Emission-
relevant energy use by sector is the gross energy use excluding non-energy use (e.g. asphalt for road building) and the 
input for transformation (e.g. crude oil transformed into refined products) of energy commodities, obtained from the 
WIOD Environmental Accounts database (WIOD, 2012). 
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where TIijt is either total R&D expenditures (R&D) or total patent applications (PAT) in country i, 

sector j, and time t. Environmental regulation (ER) is represented by PACE expenditures.15 Equation 

(2) controls for both unobserved and observed sector-country specific heterogeneity. The main 

difference between the regressions with the R&D and the PAT indicators lie in the lag structure 

considered for ER and public support to private R&D, as discussed below. Due to data availability 

the R&D and patent equations are estimated for the period 1999-2009 and 1997-2009, respectively. 

To deal with factors that could affect a sector innovation performance we include a vector of sector- 

and country-level covariates (ZTI). Sector-level covariates include value added (VA), the stock of 

knowledge stock (KR&D or KPAT), import penetration (IMP), export intensity (EXP), enterprises 

birth rate (BR) and death rate (DR). Country-level covariates include public support to private R&D 

(R&DGOV). 

As larger industries are likely to have greater absolute levels of PACE and are also more likely to 

have the resources necessary to meet the fixed costs, and bear the risks involved with undertaking 

investments in innovation, we include VA as a scaling variable. Among the determinants of 

innovation, a prominent role is played by technology push factors (Schumpeter, 1943; Schmookler, 

1966; Horbach, Rammer, and Rennings, 2012). Thus, we add a knowledge stock variable (KR&D or 

KPAT) capturing previous innovation experience, which has a positive influence on the innovation 

capacity of a given country because innovators can “stand on the shoulders of the giants” (Caballero 

and Jaffe, 1993). Firms/industries which exhibit greater past investment in technological 

development are also more likely to engage in innovative practices in the future (Baumol, 2002). 

The stock of knowledge is calculated using the perpetual inventory method (Verdolini and Galeotti, 

2011) (see Appendix B). We include import penetration (IMP) as a proxy of external competition. 

                                                 
15 Alternatively we can regress the ratio R&D/VA or PAT/VA on the ratio PACE/VA. However, a measurement error in 
value added could cause equation (2) to exhibit spurious correlation. Nevertheless, we estimated the equation in ratio 
form as a robustness check. The results for PACE were very similar to those reported here and are not reported to 
conserve on space. 
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Many studies following Schumpeter (Schumpeter, 1943) postulate a positive influence of market 

concentration on innovation. Schumpeter argued that market concentration reduces market 

uncertainty and motivates firms to invest in R&D. Other authors argue the opposite, claiming that 

concentration leads to inertia and hinders innovation due to lacking competitive pressure (Levin, 

Cohen, and Mowery,1985). Therefore, the sign associated with the effect of external competition on 

innovation is a priori ambiguous. Import penetration is calculated as the ratio of imports over the 

sum of domestic and import production. The data for sector level import intensities are taken from 

the WIOD input/output database (WIOD, 2012). We add export intensity (EXP) which controls for a 

sector’s participation in foreign trade. If foreign markets are more responsive to variety changes, an 

increase in export intensity could lead to more R&D spending (Brunnermeier and Cohen, 2003). 

Moreover, strong competition abroad can encourage innovation, especially if a regulated firm is 

competing with firms in countries with less stringent environmental regulations and lower wages 

(Kneller and Manderson, 2012). Export intensity is calculated as the ratio of exports over domestic 

production, based on data drawn from the WIOD (2012).16 To control for the effect of sectors’ 

structural change due to creations, deaths or relocations of enterprises on innovation intensity we 

incorporate enterprises birth (BR) and death (DR) rates in the equation. This structural changes 

might also affect environmental costs intensity. In particular, if enterprises shut down or relocate due 

to strict environmental policy, it is likely that PACE intensity decrease as the most burdened firms 

leave the market. The birth rate is defined as number of new enterprises over total enterprises, 

whereas the death rate is a number of death enterprises over total enterprises.17 The data are obtained 

from EUROSTAT Detailed enterprise statistics on manufacturing subsections (EUROSTAT, 2012a). 

                                                 
16 Due to the original classification of the WIOD database “Fabricated metal” is included in sector 8, rather than in 
sector 9. We correct values associated with sectors 8 and 9 by applying the Value Added share of “Fabricated metal” in 
aggregated metal sector from the EU KLEMS (March 2008 Release, which reports these two sub-sectors separately). As 
we could not provide these corrections for countries not reported by EU KLEMS such as Romania, Bulgaria, Cyprus, 
Lithuania and Estonia export and import data for sectors 8 and 9 of these two countries are missing. 
17 Enterprises created or closed solely as a result of e.g. restructuring, merger or break-up are not included in this data. 
Due to the original classification of the database, “Fabricated metal” is included in sector 8 rather than in sector 9 
(EUROSTAT, 2012a). 
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Finally, we account for the impact of public support to private R&D using the share of R&D 

appropriations in total government expenditures. The data come from the GBAORD OECD 

database (OECD, 2012) which has the disadvantage of being reported only at the aggregate country 

level with no sectoral detail. 

The control variables summarised by ZTI (with the exception of R&DGOV) are lagged once to avoid 

simultaneity problems with innovation activity, an issue to which we return in section 5.3 below. 

To test the dynamic effect of environmental regulation on innovation noted by several authors (Jaffe 

and Palmer, 1997; Brunnermeier and Cohen, 2003;  Hamamoto, 2006) we incorporate a lag structure 

for environmental regulation variables. It is reasonable to assume that firms immediately react to the 

introduction of regulation and engage into R&D. However, we can also assume that in some cases it 

takes time to mobilize the resources necessary for R&D investments. Therefore, in the equation 

where R&D is used as a dependent variable, we test for contemporaneous, one and two years lagged 

effects of environmental policy due to different assumptions about the reaction time of firms to 

environmental regulation. The choice of the number of lags is based on previous findings which 

show that the policy variable is most significant with lags between zero and two years (se, for 

example, Brunnermeier and Cohen, 2003; Hamamoto, 2006; Johnstone, Hascic, and Popp, 2010). 

Given the different nature of R&D and patent data, we assume a different lag structure in the patents 

equation. Specifically, we assume that the whole innovation process from R&D investment to a 

patent application takes time and that environmental policy-induced innovations could be translated 

into patents with at least one (or more) year lag period. Thus, we include from one to three-year 

lagged regulation variables in the patent equation. 

Equation (2) includes country-sector specific effects αij which absorb the impact of sector-specific 

time-invariant characteristics of innovation ability and are also likely to be correlated with PACE. 

We also assume that shocks in innovations could vary between new and old member states and 

therefore we allow for time effects µt and their interaction with an “Old Member countries” dummy 
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variable, denoted by OLD. A related issue is whether to treat country-sector effects as fixed (FE) or 

random (RE). The RE model is consistent only if country-sector specific effects are uncorrelated 

with the covariates, which is unlikely to occur when there are omitted variables. The FE model, 

instead, is required in the presence of such correlation, though it uses only the within variation of the 

data, thereby leading to less efficient estimation. Since in our context unobservable factors, that are 

constant over time but vary across countries and sectors, can affect innovation activity and are also 

likely to be correlated with the other regressors, we estimate the innovations models using a FE 

estimator.18 

5.2 Estimation Results 

Tables 5 and 6 report the estimation results of the effect of environmental regulation, as proxied by 

PACE, on R&D efforts and patenting activity respectively. Columns (1)-(2) and columns (3)-(4) 

differ as they consider either a contemporaneous (resp. one-year lagged) or one-year lagged (resp. 

two-year lagged) impact of PACE on the innovation variable. As a starting point, columns (1) and (3) 

of both tables report the results for the baseline specification similar to Jaffe and Palmer (1997). The 

baseline specification is then augmented to control for the knowledge stock, export and import 

intensity, enterprises’ birth and death rates in the remaining columns.19 

[Insert Table 5 about here] 

[Insert Table 6 about here] 

The first and most relevant result emerging from Table 5 is that in no case is the impact of 

environmental regulation on R&D efforts statistically significant across all the specifications. 

On the contrary, according to Table 6 the effect of PACE on patent applications is always 

                                                 
18 We validated this choice with a Hausman test whose outcome, not reported in the tables for brevity, confirms that the 
FE model is preferred to the RE model. 
19 It should be kept in mind that due to data availability issues the estimation of the R&D equations are carried out on a 
smaller country sample than that of the patent equations. In particular, we lose observations on three countries, namely 
Lithuania, Estonia and Cyprus. Therefore, the results of two innovation equations are not directly comparable. However, 
results available from the authors upon request show that the findings are robust to the use of homogeneous samples. 
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positive and significant. Depending on the specification, a 10% increase in PACE is associated 

with a 0,3-0,9% increase in number of patent applied for.20 Taking together the results of R&D 

and PAT, we conclude that environmental regulation does not seem to have an effect on overall 

R&D, but it increases the number of patents in the short- and in the medium-run. These findings 

are in line with the literature pointing to a positive and significant impact of environmental 

regulation on innovation (Ambec, Cohen, Elgie, and Lanoie, 2013). However, they are in 

contrast with those of Jaffe and Palmer (1997), who find a positive effect of PACE on R&D but 

not on patents.  Our explanation to reconcile this difference is that in the EU more stringent 

regulation does not seem to provide a stimulus to one important input to the production of 

knowledge, butit does favour a more efficient combination of all the inputs involved which 

results in a higher knowledge output, as proxied by patents. 

The coefficients associated with other controls used in the regressions are generally in line with 

expectations. For instance, the positive coefficients associated with the knowledge stock variables 

confirm the results from a rich literature pointing to the “standing on the shoulder of the giants” 

effect (Caballero and Jaffe, 1993). Participation in international trade has a positive effect on 

sectoral R&D, confirming positive learning-by-exporting effects. External competition, measured by 

import intensity, has a negative and significant im- pact both on R&D and patent, confirming the 

Schumpetrian view of a negative influence of market pressure on innovation. Closure of enterprises, 

measured by death rate, results in increased R&D intensity, while patent intensity is positively 

affected by opening of new enterprises. In several specifications the public support of private R&D, 

as measured by the share of public R&D in government budget, has positive effect on private R&D 

and patent behaviour. 

5.3 Endogeneity of PACE 

                                                 
20 Several additional results are available from the authors upon request. Many of them are not reported because of 
space limitations. For instance, the results of Tables 5 and 6 do not change if we considered longer lags for PACE. 
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Even with all the controls included in the innovation equation, confounding trends in sector-level 

innovation performance and unmeasured omitted factors that could affect PACE are still reason for 

concern. In fact, the endogeneity of the PACE could cause both downward and upward bias in the 

estimation of its effects. The assumption that omitted common determinants of the cost of regulation 

(PACE) and innovation are time-invariant could be too strong, as these factors are likely to change 

in time. If this assumption is relaxed, we cannot hope to capture these factors simply including 

country-sector fixed effects αij. 

Endogeneity of PACE could also arise in the innovation equation because of reverse causality from 

innovation to environmental costs. In fact, not only could PACE affect innovation, but also 

regulation-induced innovation that is designed to lower costs of compliance with regulation will 

affect PACE (Carrion-Flores and Innes, 2010; Kneller and Manderson, 2012). This two-way relation 

could bias downward the coefficient of PACE. 

Finally, PACE estimates could be biased due to a measurement error problem. PACE is self-

reported by firms that could face difficulties in identifying the portion of the expenditures associated 

with regulatory compliance in their total expenditures. It could therefore be reported with errors. 

Moreover, PACE is not adjusted to take into account transfers or subsidies. At the same time, some 

Member Countries use subsidies and refund schemes to protect producers from any negative effect 

on competitiveness arising from increases in input costs (European Commission, 2010).21 

To overcome potential endogeneity issues we adopt an instrumental variable (IV) estimation 

approach. Although finding suitable instruments is not easy, PACE is instrumented here with a 

vector that includes all the covariates of the previous tables and the average share of PACE intensity 

                                                 
21 If we go back to equation (1) and assume that ER is not observed, we can specify the following: 

(i) C= g( ER,Z )  
(ii)  PACE= g( ER,W)  

We can solve (ii) for ER as a function of PACE: ER= g− 1( PACE ,W) and substitute the result in (i) so that: 

(iii)  C= h(PACE,W ,Z )  
which is the baseline equation we estimate. This clarifies the endogeneity of PACE.  
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for eight adjacent sectors of the same country excluding the current sector (PACE/VA−j ). This is 

taken as is and also interacted with pre-sample sectoral energy-intensity (year 1996), 

(PACE/VA−j*EIpre).
22 In fact, there is a strong correlation between environmental policies applied to 

different sectors within one country: a sector’s PACE intensity is therefore strongly correlated with 

adjacent sectors’ PACE intensity within a country. We complement this instrument with its 

interaction with pre-sample sectoral energy-intensity as regimes of environmental regulation of 

energy-intensive sectors could differ from those of less intensive sectors within the same country: 

thus environmental policies of energy intensive sectors could stand out from policies of adjacent 

sectors. EI is defined as emission-relevant energy use (in tonnes of oil equivalent, TOE) over value 

added. 23 The identification assumption for all the instruments is that conditional on sectoral Value 

Added, innovation stock, government R&D support, import and export intensities, enterprises 

demographic indicators, country-sector fixed effects and time effects, these instruments are strong 

predictors of sectoral level PACE, but are not correlated with unobserved factors impacting 

innovation. 

We estimate the effect of environmental costs on innovation performance using 2SLS and optimal 

IV-GMM estimators in the just identified and the over identified equations, respectively. The first 

stage attempts to isolate the portion of variation in PACE intensity that is attributable to exogenous 

environmental expenditures. Predicted PACE from the instruments ignores structural concerns and 

two-way causality problems that make actual sectoral PACE intensity endogenous. We could be 

relatively confident that our results reflect causal effects of environmental costs on sectoral 

innovation performance. Firstly, using a panel data framework we control for sector- and country-

                                                 
22 We should note that using PACE/VA−j  we lose several observations for Estonia, Lithuania, Slovenia, Slovakia and the 
UK where the PACE data across the sectors are not complete. Due to the nature of EIpre that is time invariant, we could 
not include it as an individual regressor in the first stage FE regression. 
23 Emission-relevant energy use by sector is the gross energy use excluding non-energy use (e.g. asphalt for road 
building) and the input for transformation (e.g. crude oil transformed into refined products) of energy commodities, 
obtained from the WIOD Environmental Accounts database (WIOD, 2012). There are minor differences in the energy 
intensity classification comparing to the innovation indicators and PACE. Due to the original classification of the WIOD 
database “Fabricated metal” is included in the sector 8, rather than in the sector 9. Concerning the sample size, we lose 
observations on Norway when using EI as an instrument, due to the lack of sector-level data on energy use. 
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specific unobserved characteristics. Moreover, we also control for a level of technological 

advancements and structural changes within a sector that are commonly accused to generate PACE 

endogeneity if not explicitly controlled for in a sector-level regulation-innovation model. As well, 

because we have two instruments for one endogenous variable, we are able to test the joint validity 

of these instruments, and to show that they pass an over identification test. 

Tables 7 and 8 report the results of the first-stage regression between PACE and the set of 

instruments in the R&D and patent equations, respectively. In both equations the instruments 

positively correlate with PACE. The coefficient of PACE/VA−j  and its interaction with the pre-

sample EI are shown to be strongly significant. The specification tests reported at the bottom of the 

tables confirm relevance and validity of the instruments. The Kleibergen-Paap test for weak 

identification shows a F-statistics that exceeds a widely used rule of thumb of 10 (Staiger and Stock, 

1997) in columns (5)-(8) of Table 7 and in columns (1)-(4) of Table 8, although in the other cases it 

is close to that value. On this basis the joint significance of excluded restrictions in the first-stage 

regressions is not rejected. Moreover, F-statistics are above the reported Stock and Yogo (2005) 

weak ID test critical value (for 10-15% relative IV bias toleration) across different specifications of 

R&D and patent equations, eliminating the concern that the excluded instruments are weakly 

correlated with the endogenous regressors (Stock et al. 2002; Stock and Yogo 2005). Another weak-

instrument diagnostics that we report is Shea (1997)’s partial R2 between PACE and the excluded 

instruments after controlling for the included instruments in the first-stage regression. The high 

value in the patent equation indicates that the endogenous regressor is not weakly identified. In the 

R&D equation the value of partial R2 is rather low suggesting some need for caution. The weak-

instrument robust Anderson-Rubin (1949) test statistics always reject the null hypothesis that the 

coefficients of the one-year lagged PACE in the structural equation are equal to zero, and, in 

addition, that the over-identifying restrictions are valid. Finally, the C-test rejects the null hypothesis 

that the one-year lagged PACE can actually be treated as exogenous in the R&D equation (P value is 
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lower than 0.05). However, exogeneity of one-year PACE is not rejected in the patent equation. The 

validity of the instruments are tested with Hansen’s J-test. As the reported p-values are greater than 

0.05 in all the models, we do not reject the joint null hypothesis that the instruments are valid, i.e. 

they are uncorrelated with the error term, and conclude that the over-identifying restriction is valid.  

 

[Insert Table 7 about here] 

[Insert Table 8 about here] 

 

Table 9 reports the second-stage estimation results of the R&D equation controlling for potential 

endogeneity of PACE. Columns (1)-(4) and (5)-(9) correspond to the specifications with current and 

one-year lagged PACE, respectively. In all cases the instrumented PACE is insignificant, in keeping 

with the results of the FE estimation in Table 5. The exception is the last two columns, where PACE 

is lagged and all covariates are included, in which case it is negative and statistically significant: 

increasing regulation compliance expenditures by 10% leads to 4-5% decrease of overall R&D. 

Results available from the authors show that environmental regulation proxied by PACE does not 

affect R&D after one-year period.  

[Insert Table 9 about here] 

The results of the patent equation using one- and two-years lagged PACE variables are reported in 

Table 10. The one-year lagged PACE remains positive and strongly significant with the similar 

magnitude to the FE estimation. Other things equal, an additional 10% of regulation compliance 

expenditures increases the number of patent applications by approximately 0.1% in the one-year 

period. The same holds true for the two-years lagged effect of environmental regulation on patents. 

Other things equal, an additional 10% of regulation compliance expenditure decrease number of 

patent applications by 0.2%. The exception is given by the negative statistically significant impact of 
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lagged PACE of the last two columns. We omit for brevity the estimation results of R&D and patent 

equations with PACE variable included beyond the one-year lag and the two-years lag period, 

respectively, as they don’t confirm the regulation effect. With the exception of public R&D the 

effects of the other control variables are robust to change from the FE to IV estimations in both. 

[Insert Table 10 about here] 

Taking together the results of R&D and patent equations, we conclude that environmental regulation 

lead to an increase in patent applications. Firms promptly react to environmental regulation with 

patents. We believe that these results could be driven by increased incentives of manufacturing firms 

for patent protection of green innovations. The intuition is that under a stringent environmental 

regulation patenting such projects is likely to give a firm a first-mover competitive advantage. The 

IV results of both innovation equations highlight the upward bias of the lagged PACE coefficients in 

the FE estimation. 

Our results on the R&D effect appear not to be in line with those of earlier findings of Jaffe and 

Palmer (1997) for the U.S. and Hamamoto (2006) for Japan, where more PACE are found to bring 

about significant R&D enhancement effects both in the short- and the medium-term. As to patents, a 

number of previous findings show that environmental regulation positively impacts overall 

environmental patents at the sector-level in the U.S (Brunnermeier and Cohen, 1998) and specific 

environmental patents in OECD countries (Vries and Withagen, 2005; Popp, 2006; Johnstone, Hasic 

and Popp, 2008). Differently from these authors, we find for our sample of European countries that 

environmental regulation results in enhancement of overall patent activity (and not only 

environmental patents). 

6. Environmental Regulation and Productivity: The “Strong” Porter Hypothesis 

We now turn to testing the relationship between environmental regulation and productivity 

following the same steps as in the previous section.  
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6.1. Empirical Strategy 

Having found a link between environmental regulation stringency, as proxied by PACE, and the 

output of innovation, we further examine the relationship between regulation stringency and 

productivity. Environmental regulation affects productivity through a number of channels. On one 

hand, the firm may need to use additional inputs, such as labor, materials or capital to comply with 

environmental requirements (the direct effect). Consequently, an increase in production costs could 

result in a negative impact on productivity in the short run. On the other hand, as confirmed in the 

previous section, environmental regulation would affect the stock of knowledge which in turn could  

show up in productivity (the indirect effect). The latter effect is likely to appear in the medium-long 

run.24 

In view of the multiple channels through which environmental regulation may affect productivity, 

the link between the former and the latter is traditionally modelled through reduced-form equations, 

where productivity is commonly measured by toal factor productivity (TFP) (Gray and Shadbegian, 

1993, 2001; Lanoie, Patry, and Lajeunesse, 2008; Albrizio and Zipperer, 2014). In a reduced-form 

equation the coefficient associated with environmental regulation captures the overall effect of 

environmental regulation that operates through the different channels mentioned above. In particular, 

a positive coefficient of the environmental regulation variable would mean that an induced 

innovation effect, if existing, outweighs the additional input costs caused by environmental 

requirements resulting in enhanced productivity, thus supporting the “strong" Porter Hypothesis. 

Following the literature and assuming a Cobb-Douglas three-input production function, our first 

reduced-form model is similar to (2) but relates the level of productivity to environmental regulation 

and to other controls:25 

                                                 
24 See the survey on the strong HP by Kozluk and Zipperer (2013). 
25 We also employed labor productivity as a productivity indicator. The results are qualitatively similar to the one 
reported in the text and available from the authors upon request. 
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(3)    ijttij
FP
ijtqijtijt ZERFP εµαγβ ++++= −− 1lnlnln  

where FPijt is factor productivity in country i, sector j, and time t, environmental regulation (ER) is 

given by PACE and ZFP is a vector of sector- and country-level covariates. Our first proxy of 

productivity is TFP computed as described in Appendix A. The productivity impact of 

environmental regulation is likely to be dynamic, which requires dealing with the presumed timing 

of that impact. Given that ER contributes to productivity growth, the question is how soon we can 

expect the environmental regulation effect. As to the direct effect of environmental regulation 

through additional input costs, it is likely to be prompt. As to the induced R&D effect, previous 

empirical work suggests that R&D brings about productivity growth with a lag of one to three years 

(see, for example, Griffith, Redding, and Van Reenen, 2004). Moreover, as argued in the previous 

section, the potential impact of environmental regulation on R&D is likely to be lagged as well. 

Thus, we include ER in the reduced-form productivity equation (3) with different lags, from one to 

four years. 

To control for factors that could affect sectoral productivity we include in the vector of covariates 

enterprises birth and death rates, import penetration, export intensity, and value added. The 

productivity impact of environmental regulation is conditional on plants survival. Stringent 

regulation can results in the closure of some plants. Not accounting for survivorship the true 

productivity effect could be understated. To control for the effect of a sector’s structural change due 

to enterprises creations, deaths or relocations on the productivity of a sector we incorporate 

enterprises birth and death rates indicators in the equation. We also include import intensity as the 

role of import penetration is stressed in the cross-country productivity growth literature. The 

literature suggests a variety of mechanisms by which trade may affect productivity growth: among 

them spillovers of technology from the reverse engineering of imported goods, increased product 

market competition, and larger market size (Griffith, Redding, and Van Reenen, 2004), We 

supplement the vector of controls with export intensity which controls for a sector‘s participation in 
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foreign trade. As suggested by learning-by-exporting hypothesis, strong competition abroad could 

encourage productivity improvements (Grossman and Helpman, 1991). Finally, as larger industries 

are likely to have greater absolute levels of PACE, we include value added as a scaling factor. 

The covariates, as before, are lagged one year to avoid two-way causation with productivity. Other 

than learning-by-exporting effect, the causality can run from productivity to export through the self-

selection effect: higher productivity could cause higher exporting of the firm. Productivity decrease 

of the local producers could bring into the country the foreign producers, thus, increasing import 

intensity. Moreover, the productivity enhancement could cause boost of production scale, thus the 

causality between productivity and VA could also be bidirectional. 

An alternative version of (3) that we consider proxies FP with total factor productivity growth 

(TFPG), described in Appendix A, as there is no a priori reason to prefer, in the present context, 

TFP levels or TFP growth.26 In the TFPG specification, in keeping with a large literature we 

supplement the vector ZFP with a measure of TFPG at the frontier (TFPG-frontier) and a measure of 

the distance from the technological frontier (TFP-gap) that are found to be important determinants 

of productivity growth (Nicoletti and Scarpetta, 2003; Griffith, Redding, and Van Reenen, 2004). 

The frontier country is defined as the country with the highest TFP level in sector j and at time t. 

The assumption is that, within each sector and year, the level of efficiency, among the other factors, 

depends on technological and organizational transfers from the technology leader country. This 

variable aims at capturing the link between TFPG in the "catching-up" country with the extent of 

innovation and knowledge spillovers which are taking place in the technologically most advanced 

country. In particular, we assume that TFPG in the frontier country leads to faster TFPG in follower 

countries by widening the production possibility set. We also include a technological gap that is 

                                                 
26 To confirm the robustness of our results, we also use the quality-adjusted TFP growth indicator which, according to 
theory, is a better indicator of disembodied technological change than “raw" TFP. The TFP growth indicator is 
constructed using the quality-adjusted input indices, as described in (A.3) of Appendix A. However, the disadvantage of 
using quality-adjusted TFPG indicator is that we lose some observations due to lack of data availability of quality 
adjusted indices. The results, available from the authors upon request, are qualitatively similar to the one using the ‘raw" 
TFP growth indicator. 
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defined as the distance between TFP level of sector j in country i and the frontier country at time t. 

We assume that this variable captures the extent to which TFPG in a specific country can be 

explained by the adoption of more efficient existing technologies. The assumption here is that the 

larger the technology gap, the higher the potential gains from adopting more efficient, 

internationally available, technologies and consequently the faster the rate of TFPG. 

Finally, it is to be noted that, due to the availability of productivity data availability, estimation is 

carried out for eleven European countries, out of the seventeen for which PACE data are available 

(Czech Republic, Finland, Hungary, Lithuania, Netherlands, Poland, Portugal, Slovenia, Spain, 

Sweden and the United Kingdom), over the period 1997-2007. Therefore, the results are not directly 

comparable with innovation model results that were estimated for seventeen countries.27 

6.2 Estimation Results 

Results  of the estimation of the reduced-form model where we regress TFP against one- and two-

years lagged PACE and the set of controls are presented in Table 11.  

[Insert Table 11 about here] 

As in the previous section, we use the model with country-sector fixed effects and consider both 

TFP level (columns 1-2) and TFPG (columns 3-4) as dependent variables. Across all specifications 

we find no evidence of a statistically significant effect of environmental policy stringency on factor 

productivity. Regardless of the controls used, PACE variable always remains insignificant. As to the 

other controls, only those directly attributable to the TFP convergence model turn out to be 

significant.  

We may also want to verify the impact of generic innovation on the level of TFP in connection to 

the empirical work carried out in the previous section under the weak PH. As innovation proxies we 

                                                 
27 Results available from the author upon request show that the results of innovation model are robust to using the  
sample of the productivity model. 
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therefore use the fitted values of R&D and PAT variables predicted from the innovation equations of 

Tables 5 and 6. The results of the FE estimation of this TFP level model are reported in Table 12.28  

[Insert Table 12 about here] 

They do not favor the idea that innovation drives the productivity growth. The coefficients 

associated with the fitted value of the one-year lagged overall R&D are insignificant, whereas patent 

variable is negative but only weakly significant.29 Judging from this model, higher R&D investments 

over time do not bring any productivity gain to a certain country-sector, whereas more patent 

applications might decrease its productivity.  

6.3 Endogeneity 

The potential endogeneity of PACE could be a concern also in the productivity equations. Firstly, in 

the FE specification the assumption that omitted common determinants of cost of regulation (PACE) 

and productivity at the country-sector level are time-invariant could be too strong, as these factors 

are likely to change over time. If this assumption is relaxed, we can not capture these factors with 

the country-sector fixed effects αij. Secondly, endogeneity of contemporaneous PACE could arise in 

productivity equations for the likely reverse causality. Firms’ political pressures to change 

regulations are an important potential source of reverse causality. In particular, if firms respond to 

negative productivity shocks by “lobbying” for relaxing of environmental regulations, inverse 

causality would entail a positive correlation between productivity and environmental regulation 

indicators. Therefore, the impacts of environmental regulations on productivity could be 

overestimated. Finally, similar to the innovation equation, productivity impact of environmental 

regulation could be biased due to PACE measurement error. 

                                                 
28 Bootsrapped standard errors were applied to properly account for the problem of generated regressors. 
29 The results are robust to using different lags of R&D and PAT, to using the original R&D and PAT values (rather than 
predicted), and to using the stocks of R&D and PAT instead of the flows. 
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To overcome the potential endogeneity issues we adopt an instrumental variable (IV) approach 

similar to the one used in innovation equations. We estimate the effect of environmental costs on 

innovation performance using 2SLS and optimal IV-GMM estimators in the just identified and the 

over identified equations, respectively, including country-sector and time fixed effects. The 

instruments are the same as before. The identification assumption is that conditional on import 

intensity, export intensity, enterprises demographic indicators, fixed effects and time effects, the 

instruments are strong predictors of sectoral level PACE intensity, but are not correlated with 

unobserved factors impacting productivity. 

Table 13 reports the results of the first-stage IV regression. We present the results of the TFP level 

model in columns (1)-(4) and of the TFPG model in columns (5)-(6) respectively. The coefficients 

of PACE/VA−j  and PACE/VA−j*EIpre are strongly significant across all the specifications. The 

specification tests reported at the bottom of the tables confirm relevance and validity of the 

instruments. The Kleibergen-Paap test for weak identification F-statistics considerably exceed the 

widely used rule of thumb equals to 10 (Staiger and Stock, 1997), thus not rejecting the joint 

significance of the excluded restrictions in the first-stage regression. Moreover, the F-statistics are 

higher than the reported Stock and Yogo (2005) weak ID test critical value (for 10% relative IV bias 

toleration) across different specifications, thus eliminating the concern that the excluded instruments 

are weakly correlated with the endogenous regressors (Stock, Wright, and Yogo, 2002; Stock and 

Yogo, 2005). Another weak instrument diagnostics that we use is Shea (1997)’s partial R2 between 

PACE and the excluded instruments after controlling for the included instruments in the first-stage 

regression. Shea’s partial R2 are relatively large, thus indicating that the endogenous regressor is not 

weakly identified. 

[Insert Table 13 about here] 

The validity of the instruments are tested with Hansen’s J-test of over-identifying restrictions. As the 

reported p-values are greater than 0.05 in all the models, we do not reject the joint null hypothesis 
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that the instruments are valid, i.e. uncorrelated with the error term, and conclude that the over-

identifying restriction is valid. The weak-instrument robust Anderson-Rubin (1949) test statistics 

does not reject the null hypothesis that the coefficients of the one- and two-years lagged PACE in 

the structural equation are equal to zero, and, in addition, that the over-identifying restrictions are 

valid. 

 The results of the second-stage IV regression, presented in Table 14, are not completely in line with 

those of Table 12 where we did not account for the potential endogeneity of PACE. The effect of 

environmental regulation remains negligible and insignificant in the TFPG regression.30 As to the 

TFP level model, we find a negative, weakly significant effect of one-year lagged PACE, but not of 

two-year lagged expenditures. We believe that these results should be taken with care, as the FE 

model does not support as whole the “innovation channel” of productivity growth. 

[Insert Table 14 about here] 

Taking together the productivity models results, we may conclude thus that more stringent 

environmental regulation does not harm productivity either in one-year or in two-years period. 

Rather, the overall productivity effect is neutral. We found some evidence that not accounting for 

PACE endogeneity the estimates of productivity effect could be downward biased. On the whole, 

potential positive effects on firms’ innovation activity appear not to be able to offset the negative 

effect of additional compliance costs. We thus fail to find support in favor of the “strong” Porter 

Hypothesis. 

7. Robustness 

In this subsection we give account of several robustness checks we have carried on the regression 

models of both the weak and the strong PH. For space reasons we present no tables of empirical 

                                                 
30 The results available from the authors upon request show that the PACE beyond the one-year lag has no effect on 
TFPG in the IV regression. 
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results, which are nevertheless available from the authors. We note here that the outcome of these 

checks does not alter qualitatively the empirical results and the conclusions we reached.   

A first concern in estimating the cross-country sector-level innovation and productivity models is 

the choice of the fixed effect. Inclusion of country-sector specific effects αij are to be preferred to 

control for country-sector time-invariant determinants of innovation and productivity levels and 

growth rates that are also likely to be correlated with the regressors. However, using country-sector 

specific effects implies that the parameters are identified only through the within dimension of the 

data. As one could see from the analysis of variance in Table A.2 of Appendix A, this could do in 

the case of R&D and PAT, while TFP has very low within variation (close to zero) which may entail 

imprecisely estimates in the FE regression. We re-estimated all models with an alternative 

specification that assumed two separate fixed effects, i.e. country effects αi and sector effects αj. 

This specification mostly relies on the variation across countries and sectors that could be fruitfully 

exploited with our TFP data. Moreover, separate country and sector fixed effects account for a 

variety of omitted variables in the productivity equation such as the level of education and skills of 

labor force, own-sector regulatory environment, and the like.  

A second robustness check is related to lags of productivity effect of environmental regulation. As  

mentioned in Section 5, innovation could be translated into productivity improvements with long 

lags. Moreover, the returns on environmental innovation are likely to be further lagged, as they 

regard mostly newly created markets which are small and fast growing. Short run returns from 

eco-innovations could be negligible, while medium-long run returns could be very high. Thus, we 

tested for two-year lag effect of PACE in the R&D equation, for a three-year lagged PACE effect in 

the PAT equation, and for an impact of three and four year lagged regulation variable in the TFP 

level equation. This was done both not accounting and accounting for the endogeneity of PACE.  

We use sample of equal dimension for all the equations presented above; we estimated the 

innovation equations using rations in value added for PACE and R&D/PAT; we experimented with 
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labor productivity levels and growth rates; we experimented with effective energy tax rates instead 

of PACE. Generally speaking, our conclusions were unaffected by these extensions. We therefore 

summarize them hereafter. 

8. Concluding Remarks 

This paper has provided fresh new econometric evidence on the nexus between environmental 

regulation and competitiveness, as captured by innovation activity and productivity. The analysis 

was based on a panel of industrial sectors across seventeen European countries over the period of 

1997-2009. We have provided a combined assessment of both innovation and productivity impacts 

of environmental regulation, allowing to shed further light on the well-known Porter Hypothesis in 

both its weak and its strong version. Only few papers offer this comprehensive view, and even fewer 

do so in the context of manufacturing sectors of European countries. This is both interesting and 

relevant, as environmental policy intervention in the European Union has become increasingly 

intense and widespread since the late ‘80s.  

Another important feature of the paper is that it explicitly accounted for the potential edogeneity of 

our proxy of environmental policy, PACE, in the investigation of the environmental regulation-

economic performance nexus. Only a handful of papers seem to have worried about this problem, 

which basically affects all proxies for policy stringency, not limited to environmental policy. Our 

results show that not controlling for the endogeneity of the PACE variable may lead to biased 

estimates and in some cases may reverse the interpretation of the environmental regulation effect on 

economic performance and competitiveness. 

Succintly reporting the results of our econometric investigation, we fail to find a statistically 

significant effect of PACE on R&D efforts. Despite this fact, we find a positive and statistically 

significant patent effect of environmental regulation. These findings are robust to proper account of 

the endogeneity of PACE. Comparing with the earlier sector-level studies, our results on adverse 
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R&D effect of environmental regulation obtained for the sample of the European countries contrast 

with the results of Jaffe and Palmer (1997) for the U.S. and Hamamoto (2006) for Japan, where 

more PACE was found to bring about significant R&D enhancement effects both in the short- and 

the medium-term. One potential explanation for these contrasting evidence relates to the 

endogeneity of PACE, among other possible factors. As to previous country-level studies on Europe, 

focusing on specific environmental patents, rather than overall patent behaviour, they generally 

conclude that environmental patents positively responds to environmental policy (de Vries and 

Withagen, 2005; Johnstone, Hascic, and Popp, 2010). However, they do not consider the 

opportunity costs of environmental innovation. Therefore, our results are not directly comparable 

with these studies. 

Turning to productivity as a proper measure of competitiveness, our analysis fails to confirm a 

statistically significant role of environmental policy stringency on TFP, both in levels and growth 

rates. Accounting for PACE endogeneity does not alter this conclusion. The evidence that more 

stringent environmental regulation does not affect productivity is in contrast with the findings of  

early U.S. studies (Gray and Shadbegian, 1993, 2001) of depressing effects of environmental 

regulation on industrial productivity or with the results of the sector-level productivity investigations 

for other countries (Hamamoto, 2006; Lanoie, Patry, and Lajeunesse, 2008; Yang, Tseng, Chen, 

2012) which concluded that stringent environmental policy spur productivity growth. This is also the 

finding of a recent invstigation conducted on ten sectors for seventeed OECD countries (Albrizio 

and Zipperer, 2014). Again, it is possible that one of the reason for this disagreement is the PACE 

endogeneity. 

These contrasting results provide a strong motivation for further research into this time-honoured, 

relevant issue. One limitation of this paper to overcome refers to the coverage of European countries 

for which PACE data were available. Large economies of the EU that widely apply various 

regulatory instruments for pollution control and natural resource management, such as Germany, 
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France and Italy could not be included. Moreover, due to data availability our productivity analysis 

was based on a few countries of interest (Czech Republic, Finland, Hungary, Netherlands, Slovenia, 

Spain, Sweden, United Kingdom, Lithuania, Poland, Portugal) and a relatively short time period, 

that does not allow to consider increasing number of recent environmental policies, that entered into 

force after 2006 as consequence of EU-wide environmental strategy.  

Related to the above problem is the issue of the search for suitable measures of environmental 

regulation. The debate surrounding this issue has been recently intensifying and so has research 

(Brunel and Levinson,  2013; Botta and Kozluk, 2014; Nesta, Vona, and Nicolli, 2014; Salini, 

Verdolini, Rubashkina, and  Galeotti, 2014). This issue is not in principle limited to the 

environmental area, but more generally it applies to any empirical analysis of the impact of policies 

on economically relevant variables.  

In a nutshell our conclusions are that there is evidence in favour of the weak version of the PH in 

European manufacturing sectors. The overall productivity effect of regulation becomes however 

neutral when searching for a “strong” Porter Hypothesis effect. 
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Appendix A: Definition of the Main Variables 

 

Table A1: Variables Definition and Data Sources 

Variable Variable Description  Source Data 
Availability  

Dependent Variables 

Patent Total patent applications to EPO EUROSTAT 1977-
2009 R&D Total R&D expenditures, 

percent 
OECD ANBERD, mln.constant 
euro 

1998-
2009 TFP Total Factor Productivity EU KLEM 1970-
2007 Explanatory Variables 

PACE PACE EUROSTAT, mln.constant euro 1997-
2009 PACE/V

A 
Ratio of PACE to Value Added EUROSTAT, percent 1997-

2008 PACE/G
O 

Ratio of PACE to Gross Output EUROSTAT, percent 1997-
2008 VA Value Added EUROSTAT, mln.constant euro 1995-
2008 GO Gross Output EU KLEM, mln.constant euro 1977-
2009 KPAT Patent stock EUROSTAT, 1993-
2009 KR&D R&D stock OECD ANBERD, percent 1998-
2009 GOVR&

D 
Share of government R&D in 
total government expenditures 

EUROSTAT, percent 1980-
2009 IMP Import intensity WIOD, percent 1970-
2009 EXP Export intensity WIOD, percent 1970-
2009 BR Birth rate EUROSTAT, percent 1970-
2009 DR Death rate EUROSTAT, percent 1970-
2009 EI Energy intensity WIOD, percent 1970-
2009  

 
Table A.2: Variance Analysis of the Main Variables 

Variable Mean Standard 
Deviation 

Ln PACE overall 
between 
within 

3.308 1.660 
1.541 
0.472 

Ln R&D overall 
between 
within 

2.835 2.158 
2.134 
0.421 

Ln PAT overall 
between 
within 

1.854 1.916 
1.888 
0.324 

TFP overall 
between 
within 

1.156 0.437 
0.434 
0.067 

TFP growth overall 
between 
within 

0.013 0.042 
0.011 
0.040 
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Appendix B: Construction of Innovation Stock 

The stock is calculated using the perpetual inventory method (Verdolini and Galeotti, 2011) as follows: 

(B1)      
1)1( −−+= ijtijtijt KTITIKTI δ

 

where TI = (R&D, PAT) and δ is the decay rate, set at a value of 0.1, as suggested by Keller (2002). The 
initial innovation stock is calculated as follows: 
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In equation (B2) we use t0 as the initial year of stock calculation and 
ijg

 is the sector-country specific 
average innovation growth of the three years preceding t0. In the case of the R&D equation the knowledge 
stock is based on private sectoral R&D and t0 = 1998 (as data for  earlier years are not available). In the 
patent equation the stock is computed using sectoral patent applications and t0 = 1993. 

 

Appendix C: Construction of Productivity Indicators  

Assuming a Cobb-Douglas three inputs production function, the level of TFP is defined as the portion of 
output not explained by the amount of factor inputs used in production : 
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where TFP denotes the level of total factor productivity, GO is gross output, L is labor hours (of total 
engaged workers), I is intermediate inputs (including energy, service and material inputs), and K is net fixed 
capital stock,. All the monetary variables are expressed in constant prices and PPPs. 

Concerning the inputs weights, there are two widely used approaches to estimate α and β. On the one hand, 
we can assume that input markets are competitive and that there are no sources of rents to the firm (e.g., we 
assume constant returns to scale and perfect competition). This implies that the coefficients α and β are the 
shares of the revenue received by each of the factors. On the other hand, one can assume that the coefficients 
are (roughly) constant across entities and estimate them with regression techniques. We follow the first 
approach and compute α and β as the labour input and intermediate input shares in total costs, respectively. 
The assumption of constant return to scale implies that sum of input shares is equal to 1. 

To compute the labour input share we adjust labour compensation by the ratio of total employment to total 
employees in order to account for the compensation of self-employed. These are not registered in the 
National Accounts and, therefore, are not included in the labor compensation indicator. To obtain the capital 
input share we calculate the nominal capital value as the residual of gross output minus labour compensation 
in nominal values. If the residual and therefore the share in total output are negative, we use a simple 
heuristic rule suggested in O‘Mahony and Timmer (2009) and constrain capital compensation to be non-
negative, setting it to zero. 

To calculate quantities of input and output, nominal values are deflated by industry-specific relative prices 
(PPPs). PPPs are output-specific and various types of inputs-specific and are available for all the EU 
countries at a detailed EU KLEMS industry level from the GGDC Productivity Level database (Inklaar and 
Timmer (2008)).The limitation of these price indices is that they are available only for the year 1997. 
Therefore, to extrapolate PPPs for the period 1995-2007 we backdate and update PPPs of 1997 using price 
deflators for each country relative to the US, which is a benchmark country, at a detailed industry level. For 
example, PPPs for VA is extrapolated as follows: 
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where VA_P is the VA deflator. A similar methodology is used for extrapolation of output and intermediate 
inputs PPPs. However, we follow a different procedure to obtain capital inputs due to the lack of the capital 
input deflators. We adjust the capital stock (in constant 1997 prices) obtained from the EU KLEMS with the 
PPPs for capital service. The capital PPPs is not available for Greece, Lithuania, Latvia, Poland, therefore, for 
these countries we apply PPPs for GO (the drawback is that we don’t adjust the capital stock for possible 
price changes in the benchmark country). 

As argued in the literature, a major issue in the construction of TFP measures is the need to control for the 
quality of inputs. TFP estimates constructed from the measures of labor and capital inputs that are not 
adjusted for the skill composition of the workforce, on one hand, and for the composition of the capital stock 
inputs, on the other hand, capture both disembodied and embodied components of technological progress (see 
Nicoletti and Scarpetta, 2003; O‘Mahony and Timmer, 2009). The disembodied component captures 
technological and organisational improvements that increase output for a given amount of quality and 
compositionally adjusted-inputs. The second component of technological progress is termed embodied and 
proxies for the improvements in the productive capacity due to shifts to higher quality factor inputs (Nicoletti 
and Scarpetta, 2003). Therefore, any “raw” TFP indicator captures both embodied and disembodied aspects 
of technical change, whereas a quality-adjusted TFP indicator measures productivity obtained through 
technological and efficiency improvements. 

We calculate the quality-adjusted TFP growth as the real growth of output minus a weighted growth of inputs 
services: 
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~

 denote a gross output index, L
~

, I
~

, and K
~

 are labor services, intermediate input and capital 

services indices, respectively, and α  and 
β

 are the average inputs shares over two periods computed as 
following: 
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Similarly, we define the "raw" TFP growth indicator, using the output and inputs variables as defined in (C1). 

We also need to address an issue of sectoral aggregation in our data. The breakdown of the 28 subsectors of 
the EU KLEMS dataset differs from the nine sectors PACE classification that we use. We therefore need to 
merge some of the sub-sectors to conform to the required classification. We collapse “Chemicals and 
chemical products” and “Rubber and plastic products” in the sector 6. As well, we collapse “Machinery and 
equipment”, “Electrical and optical equipment”, “Transport equipment” and “Manufacturing nec; recycling” 
to obtain sector 9. Still, some inconsistency remains between productivity and PACE measures sectoral 
breakdown. Firstly, in PACE sectoral breakdown “Fabricated metal” is included in sector 9, while in the EU 
KLEMS it is reported together with “Basic metal” and could not be isolated and attributed to sector 9. We 
correct the nominal input and output values associated with sectors 8 and 9 by computing “Fabricated metal” 
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value share in aggregated metal sector from the EU KLEMS (March 2008 Release, which reports these two 
sub-sectors separately). The only (minor) problem that remains and, unfortunately, could not be solved is that 
while “Recycling” is excluded from sector 9 for PACE, it is included and could not be isolated from sector 9 
in the EU KLEMS. But we believe that as the sector 9 is composed of several sub-sectors, the contribution of 
“Recycling” to its productivity is smoothed. 

For aggregation of the inputs and output indices across sub-sectors we used a Tornqvist quantity index (as 
suggested by O‘Mahony and Timmer, 2009). Unfortunately, we cannot adjust the indices for the 
inconsistency between quality-adjusted TFP and PACE measures in sectors 8 and 9 classification, so we 
should keep it in mind the minor difference in the sectoral breakdown when using quality-adjusted TFP 
growth measure in our analysis. 

  



  

44 
 

 
 
Table 1: Classification of Industrial Sectors 

# Sector NACE Rev.1.1 

1 Food products, beverages and tobacco 15-16 
2 Textiles and textile products;  leather and leather 17-19 
 products  
3 Wood and wood products 20 
4 Pulp, paper and paper products;  publishing and 21-22 
 printing 

 
 

5 Coke, refined petroleum products and nuclear fuel 23 
6 Chemicals, rubber and plastic products 24-25 
7 other non-metallic mineral products 26 
8 Basic metals 27 
9 Fabricated metal, machinery and equipment, electrical 

and optical equipment, transport equipment, 
manufacturing n.e.c. 

28-36 

  Source: International Standard Industrial Classification of all economic activities 
 

 
 
 

Table 2: Summary Statistics (1997-2009) 

Variable Unit Mean Std. Dev. Min Max 
PACE/VA percent 3.63 4.56 0.05 49.13 
PACE/GO percent 0.92 1.02 0.02 12.60 
R&D/VA  percent 2.86 4.04 0.00 34.36 
PAT/VA pat/bln.euro 12.73 20.28 0.00 148.88 
TFP  1.19 0.44 -0.39 2.06 
TFPG (growth)  0.01 0.04 -0.55 0.30 
Adj.TFPG  0.01 0.02 -0.25 0.10 
GOVR&D percent 1.28 0.46 0.36 2.08 
KPAT/VA pat/bln.euro 90 144 0.00 1282 
KR&D/VA percent 22.11 34.26 0.00 219.15 
EXP percent 0.60 1.14 0.05 15.69 
IMP percent 0.33 0.18 0.04 0.97 
DR percent 0.08 0.07 0.00 1.00 
BR percent 0.09 0.08 0.00 1.00 
GDPpc euro 18303 8 119 4600 48000 
EI TOE/ bln.euro 1.16 2.49 0.02 42.41 

Source: our own computations based on the EUROSTAT, the EUKLEM, the OECD STAN, the OECD 
ANBERD and the WIOD datasets 
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Table 3: Summary Statistics of the Main Variables by Country (1997-2009) 

Country PACE/VA PACE/GO R&D/VA  PAT/VA TFP TFPG 

Bulgaria 5.28 1.14 - 5.13 - - 
Cyprus 3.00 0.84 - 11.40 - - 
Czech Republic 4.37 0.74 1.87 6.89 1.02 0.02 
Estonia 3.28 0.95 2.16 12.88 - - 
Finland 2.79 0.78 4.85 25.49 1.27 0.02 
Hungary 3.68 1.03 1.50 7.79 1.02 0.00 
Lithuania 3.46 0.78 - 4.90 1.01 0.02 
Netherlands 4.38 0.84 4.02 38.86 1.17 0.01 
Norway 2.81 0.88 4.36 16.95 - - 
Poland 3.78 0.12 0.42 2.21 1.03 -0.01 
Portugal 2.88 0.63 1.19 4.01 0.98 0.00 
Romania 5.85 1.35 3.12 1.83 - - 
Slovakia 3.62 0.82 2.06 4.11 - - 
Slovenia 3.59 0.83 2.47 12.07 1.32 0.01 
Spain 2.01 0.48 2.22 6.73 1.09 0.01 
Sweden 5.14 1.73 - 30.84 1.23 0.01 
United Kingdom 2.54 0.76 5.49 15.03 1.55 0.02 
Total 3.63 0.92 2.86 12.73 1.19 0.01 

Source: our own computations based on the EUROSTAT, the EUKLEM, the OECD STAN, the 
OECD ANBERD and the WIOD dataset 

 
 

Table 4: Summary Statistics of the Main Variables by Sector (1997-2009) 

Sector PACE/VA PACE/GO R&D/VA  PAT/VA TFP TFPG Energy Intensity 

1 2.60 0.63 1.05 4.15 1.06 0.01 0.37 
2 1.52 0.57 1.25 4.56 1.12 0.01 0.30 
3 2.38 0.64 0.48 0.90 1.21 0.01 0.56 
4 3.25 1.07 0.60 2.17 1.31 0.01 0.69 
5 9.49 1.43 4.88 19.17 0.29 0.01 3.96 
6 4.03 1.16 8.17 36.97 1.44 0.01 1.20 
7 3.45 1.29 0.99 7.42 1.67 0.02 1.39 
8 6.08 1.20 1.90 11.93 1.40 0.01 2.37 
9 1.16 0.37 5.99 29.10 1.04 0.01 0.10 
Total 3.63 0.92 2.86 12.73 1.19 0.01 1.16 

Source:  own computations based on the EUROSTAT, the EU KLEM, the OECD STAN, the 
OECD ANBERD and the WIOD. 
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Table 5: Weak PH - R&D FE Regression Results 
 (1) (2) (3) (4) 
PACE 0,043 0,033 - - 
 (0,04) (0,04)   
PACE(-1) - - -0,021 -0,045 
   (0,04) (0,04) 
VA(-1) 0,042 0,013 0,084 0,031 
 (0,04) (0,06) (0,08) (0,13) 
GOVR&D(-1) 0,043 0.311** -0,076 0,132 
 (0,18) (0,14) (0,19) (0,17) 
KR&D(-1) - 0.654*** - 0.633*** 
  (0,21)  (0,19) 
EXP(-1) - 0.434* - 0.519*** 
  (0,22)  (0,18) 
IMP(-1) - -0,32 - -0.633* 
  (0,22)  (0,35) 
DR(-1) - 1.806** - 1.938*** 
  (0,79)  (0,68) 
BR(-1) - -1,064 - -0,898 
  (0,82)  (0,70) 
F-test 1.32* 5.61*** 1.45** 8.46*** 
Within R-squared 0,05 0,22 0,05 0,26 
N. Observations 750 515 694 512 
N. Country-sector  Effects 129 105 129 104 

Notes to the table: a) all variables in logs; b) coefficient estimates from FE estimation; c) 
country-year fixed effects and full set of time dummies included in all models; d) robust 
standard errors (clustered on the sector-country unit) in parentheses; e) Significance:* 
p<0.1, ** p<0.05, *** p<0.01; f) the data on EXP, IMP, DR and BR are not complete, 
therefore we lose some observations when adding these covariates in the regressions. 
 
Table 6: Weak PH - Patents FE Regression Results 

 (1) (2) (3) (4) 
PACE(-1) 0.086*** 0.030** - - 
  (0,02) (0,02)     
PACE(-2) - - 0.096*** 0,002 
      (0,03) (0,02) 
VA(-1) 0,061 -0,045 -0,032 -0,045 
  (0,05) (0,03) (0,04) (0,03) 
GOVR&D(-1) 0.323*** -0,073 0.286*** -0,086 
  (0,10) (0,07) (0,11) (0,08) 
KPAT(-1) - 0.509*** - 0.487*** 
    (0,08)   (0,09) 
EXP(-1) - 0,05 - 0,105 
    (0,07)   (0,09) 
IMP(-1) - -0.277** - -0.385*** 
    (0,11)   (0,15) 
DR(-1) - 0,024 - 0,129 
    (0,21)   (0,26) 
BR(-1) - 0.275* - 0.483* 
    (0,16)   (0,29) 
F-test 6.89*** 6.40*** 10.32*** 6.70*** 
Within R-squared 0,37 0,39 0,39 0,35 
N. Observations 913 639 883 587 
N. Country-sector Effects 153 125 151 126 
Notes to the table: see Table 5. 
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Table 7: Weak PH - R&D IV Regression - First Stage Results  
  (1) (2) (3) (4) (5) (6) (7) (8) 
PACE/VA−j 0.268*** 0.350*** 0.204*** 0.268*** - - - - 
  (0,06) (0,07) (0,07) (0,07) 

  
    

PACE/VA−j(-1) - - - - 0.395*** 0.414*** 0.374*** 0.360*** 
  

  
    (0,09) (0,09) (0,10) (0,10) 

PACE/VA−j*EIpre - -0.074** - -0.244** - - - - 
  

 
(0,04)   (0,11) 

  
    

PACE/VA−j*EIpre(-1) - - - - - -0.122* - -0.334** 
  

  
    

 
(0,07)   (0,15) 

VA(-1) 0.105** 0.176* 0.089** 0.171* 0,106 0,119 0,112 0,103 
  (0,05) (0,10) (0,04) (0,09) (0,08) (0,09) (0,08) (0,09) 
GOVR&D(-1) -0.325* -0.354** -0,281 -0,294 -0.356* -0.351* -0.387* -0,371 
  (0,17) (0,17) (0,19) (0,20) (0,20) (0,20) (0,23) (0,23) 
KR&D(-1) - - 0.244* 0,226 - - 0,171 0,217 
      (0,14) (0,15)     (0,18) (0,18) 
EXP(-1) - - 0,025 -0,01 - - -0,118 -0,107 
      (0,16) (0,18)     (0,17) (0,18) 
IMP)(-1)  - - -0,068 -0,207 - - -0,298 -0,24 
      (0,27) (0,28)     (0,34) (0,34) 

DR(-1) - - -0,286 -0,45 - - 
-

2.392*** 
-

2.448*** 
      (0,53) (0,51)     (0,88) (0,86) 
BR(-1) - - -0,291 0,036 - - 1.536* 1.584* 
      (0,66) (0,66)     (0,89) (0,89) 
F-statistics 5,65 8,319 4.95*** 7.73*** 12,985 12,687 14.08*** 14.53*** 
Within R-square 0,166 0,205 0,08 0,09 0,181 0,198 0,14 0,15 
C-test of endogeneity (P value) 0,1 0,53 0,089 0,486 0,4 0,13 0,019 0 
Weak-ID test (F instruments) 17,73 15,35 9,17 12,94 20,48 13 13,48 12,53 
Stock-Yogo weak ID test (critical val 15% max IV size) 8,96 11,59 8,96 11,59 8,96 11,59 8,96 11,59 
Partial R-squared 0,05 0,08 0,03 0,06 0,08 0,1 0,07 0,09 
AR Weak-ID-robust F (P value) 0,21 0,74 0,1 0,22 0,45 0,47 0,01 0 
AR Weak-ID-robust Chi2 (P value) 0,2 0,74 0,09 0,2 0,44 0,45 0,01 0 
J-statistics (P value) 

 
0,33 0,25 

 
0,5 0,27 

N. Observations 693 629 498 480 654 620 509 492 
N. Country-sector Effects 127 120 108 102 124 117 104 98 
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Table 8: Weak PH - Patents IV Regression - First Stage Results  
  (1) (2) (3) (4) (5) (6) (7) (8) 
PACE/V A−j(-1) 0.413*** 0.458*** 0.689*** 0.673*** - - - - 
  (0,07) (0,07) (0,07) (0,06) 

  
    

PACE/VA−j(-2) - - - - 0.443*** 0.448*** 0.575*** 0.486*** 
  

  
    -0,07 -0,07 (0,08) (0,08) 

PACE/VA−j *EIpre(-1) - 0.093*** - -0.166* - - - - 
  

 
(0,03)   (0,10) 

  
    

PACE/VA−j *EIpre(-2) - - - - - -0.128** - 0.547*** 
            -0,06   (0,16) 
VA(-1) 0.171** 0.189** 0.180* 0.176* 0,093 0,106 0.404*** 0.439*** 
  (0,09) (0,09) (0,09) (0,10) -0,06 -0,07 (0,14) (0,13) 
GOVR&D(-1) -0,186 -0,198 -0,292 -0,277 -0,105 -0,091 -0,198 -0,221 
  (0,16) (0,17) (0,21) (0,22) -0,18 -0,18 (0,19) (0,18) 
KPAT(-1)     0.378** 0.390**     0.406* 0.415* 
      (0,18) (0,18)     (0,22) (0,22) 
EXP(-1)     0.467*** -0.468**     -0.351* -0,289 
      (0,18) (0,18)     (0,21) (0,21) 
IMP(-1)     0,486 0,491     0.888** 0.847** 
      (0,30) (0,31)     (0,38) (0,35) 
DR(-1)     -0,637 -0,646     -0.765* -0.901** 
      (0,49) (0,50)     (0,45) (0,42) 
BR(-1)     0,427 0,467     -0,062 0,204 
      (0,43) (0,42)     (0,48) (0,40) 
F-statistics 16,27 16,646 10.76*** 11.00*** 7,662 8,179 8.67*** 9.10*** 
Within R-square 0,23 0,256 0,36 0,37 0,202 0,221 0,32 0,36 
C-test of endogeneity (P value) 0,702 0,52     0,042 0,126     
Weak-ID test (F instruments) 39.20 25.42 110,75 60,1 38.67 23.00 47,11 33,87 
Stock-Yogo weak ID test (critical val 15% max IV size) 8,96 11,59 16,38 19,93 8,96 11,59     
Partial R-squared 0.12 0.15 0,27 0,28 0.14 0.16 0,2 0,25 
AR Weak-ID-robust F (P value) 0.10 0.04 0 0,02 0.00 0.00 0,02 0 
AR Weak-ID-robust Chi2 (P value) 0.09 0.03 0 0,01 0.00 0.00 0,01 0 
J-statistic (P value) 

 
0.13   0,48 

 
0.12   0,06 

N. Observations 862 822 637 620 817 784 573 550 
N.Country-sector Effects 150 143 129 123 148 141 119 113 
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Table 9: Weak PH - R&D IV Regression - Second Stage Results  
  (1) (2) (3) (4) (5) (6) (7) (8) 

PACE-inst -0,234 -0,034 -0,448 -0,125 - - - - 

  (0,20) (0,14) (0,32) (0,20)         

PACE-inst(-1) - - - - -0,086 -0,134 -0.403** 0.475*** 

          (0,11) (0,10) (0,17) (0,18) 

VA(-1) 0.100* 0,05 0.123** 0,093 0,086 0,079 0,156 0.190** 

  (0,05) (0,07) (0,06) (0,10) (0,07) (0,07) (0,10) (0,10) 

GOVR&D(-1) -0,20 -0,16 -0,04 0,034 -0,244 -0,26 -0,086 -0,077 

  (0,19) (0,17) (0,21) (0,15) (0,15) (0,16) (0,18) (0,20) 

KR&D(-1) - - 0.674*** 0.563*** - - 0.665*** 0.693*** 

      (0,19) (0,19)     (0,16) (0,15) 

EXP(-1) - - 0.413** 0.397** - - 0.348** 0.291** 

      (0,16) (0,17)     (0,14) (0,15) 

IMP(-1) 
- - -0,161 -0,168 - - 

-
0.494*** 

-
0.500*** 

      (0,22) (0,25)     (0,17) (0,19) 

DR(-1) - - 1,589 -0,337 - - -0,228 -0,438 

      (9,12) (1,98)     (0,68) (0,72) 

BR(-1) - - 0,848 -0,372 - - 0,141 0,254 

      (8,52) (0,90)     (0,49) (0,51) 

N. Observations 693 629 498 480 654 620 509 492 

N.Country-sector 127 120 108 102 124 117 104 98 
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Table 10: Weak PH - Patents IV Regression - Second Stage Results  
  (1) (2) (3) (4) (5) (6) (7) (8) 

PACE-inst(-1) 0.116* 0.131** 0.073** 0.063** - - - - 
  (0.07) (0.06) (0,03) (0,03) 

  
    

PACE-inst(-2) - - - - 0.192*** 0.170*** -0.060* -0.052* 
          (0.05) (0.05) (0,03) (0,03) 

VA(-1) 0.036 0.039 -0,052 -0,051 -0.059** -0.056* -0,008 -0,01 

  (0.04) (0.04) (0,03) (0,03) (0.03) (0.03) (0,04) (0,04) 

GOVR&D(-1) 0.308*** 0.333*** -0,073 -0,082 0.212** 0.202** -0.156** -0.112* 

  (0.09) (0.08) (0,06) (0,06) (0.09) (0.09) (0,07) (0,06) 

KR&D(-1) - - 0.528*** 0.535*** - - 0.537*** 0.518*** 

      (0,07) (0,07)     (0,09) (0,08) 

EXP(-1) - - 0,079 0,062 - - 0,083 0,07 

      (0,06) (0,06) (0,09) (0,09) 

IMP(-1) 
- - 

-
0.345*** 

-
0.346*** 

- - 
-

0.365*** 
-

0.418*** 
      (0,11) (0,11)     (0,13) (0,13) 

DR(-1) - - -0,028 -0,036 - - 0,108 -0,052 

      (0,16) (0,15)     (0,23) (0,18) 

BR(-1) - - 0.291* 0.307* - - 0,397 0.580** 

      (0,17) (0,17)     (0,26) (0,26) 

N. Observations 862 822 609 592 817 784 546 523 
N.Country-sector 150 143 122 116 148 141 112 106 
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Table 11: Strong PH - TFP FE Regression  

 
TFP Level TFP Growth 

  (1) (2) (3) (4) 

PACE(-1) -0,007 - 0,004 - 
  (0,01)   0,00    
PACE(-2) - -0,001 - 0,001 
    (0,01)   0,00  

TFPG-frontier     0.232** 0.226** 
      (0,11) (0,11) 

TFP-gap(-1)     
-

0.078*** 
-0.071** 

      (0,03) (0,03) 
VA(-1) -0,012 -0,017 0,003 0,008 
  (0,02) (0,03) (0,01) (0,01) 
IMP(-1) -0,019 -0,047 -0,02 0,006 
  (0,07) (0,07) (0,03) (0,03) 
EXP(-1) -0,006 -0,016 0,04 0,035 
  (0,06) (0,06) (0,03) (0,02) 
DR(-1) 0,035 0.146* 0,039 0.087*** 
  (0,04) (0,09) (0,04) (0,03) 
BR(-1) -0,027 -0,15 -0,064 -0,052 
  (0,09) (0,11) (0,05) (0,05) 

F 5.38*** 6.03*** 2.85*** 6.65*** 
R-squared 0,21 0,17 0,16 0,18 
N. Observations 476 432 476 432 
N. Country-sector Effects 95 95 95   
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Table 12: Strong PH - TFP Regression - Two-stage Model  

 
TFP Level TFP Growth 

  (1) (2) (5) (6) 

R&D-pred(-1) -0,068 - -0,001 - 
  (0,06)   0,00    
PAT-pred(-1) - -0.078* - 0 
    (0,04)   0,00  

TFPG-frontier - - 0,179 0.210** 
      (0,11) (0,10) 
TFP-gap(-1) - - 0.020*** 0,007 
      (0,01) (0,01) 
VA(-1) -0,055 -0,018 - - 
  (0,04) (0,03)     

IMP(-1) -0,032 -0,087 
-

0.008*** 
-0,005 

  (0,12) (0,08) 0,00  0,00  
EXP(-1) -0,03 -0,043 0.006** 0,003 
  (0,07) (0,06) 0,00  0,00  
DR(-1) 0,328 0,167 -0,023 0,058 
  (0,25) (0,24) (0,08) (0,06) 
BR(-1) -0.378* 0,115 -0,003 -0,042 
  (0,21) (0,22) (0,09) (0,07) 

R-squared 0,23 0,2 0,16 0,18 
N. Observations 296 354 296 354 
N.Country-sector Effects 84 86 84 86 
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Table 13: Strong PH - TFP IV Regression - First Stage Results  
  TFP level TFP growth 
  (1) (2) (3) (4) (9) (10) 
PACE/VA−j(-1) 0.683*** 0.580*** - - 0.677*** 0.560*** 
  (0,08) (0,09)     (0,08) (0,09) 

PACE/VA−j *EIpre(-1) - 
-

0.508*** 
- - - 

-
0.564*** 

    (0,19)       (0,18) 
PACE/VA−j(-2) - - 0.616*** 0.509*** - - 
      (0,08) (0,10)     
PACE/VA−j *EIpre(-2) - - - -0.501** - - 
        (0,21)     
VA(-1) 0.339** 0.447*** 0.397* 0.452** 0.333** 0.456*** 
  (0,13) (0,14) (0,20) (0,18) (0,14) (0,15) 
IMP(-1) 0.707** 0.793*** 0.867*** 0.868*** 0.633** 0.697** 
  (0,28) (0,27) (0,33) (0,31) (0,28) (0,28) 

EXP(-1) 
-

0.904*** 
-

0.852*** 
-0,406 -0,43 

-
0.890*** 

-
0.817*** 

  (0,27) (0,26) (0,36) (0,35) (0,27) (0,26) 

DR(-1) -1,106 -1,075 
-

1.202*** 
-1.241*** -1,038 -1 

  (0,88) (0,88) (0,28) (0,30) (0,89) (0,89) 
BR(-1) 1,308 1,293 1.322** 1.244** 1,301 1,298 
  (1,16) (1,16) (0,53) (0,54) (1,14) (1,13) 
F-statistics 11.36*** 13.04*** 16.72*** 16.03*** 10.97*** 11.83*** 
Adjusted R-square 0,4 0,42 0,34 0,35 0,41 0,43 
C-test of endog.(P value) 0,201 0,41 0,328 0,749 0,301 0,156 
F instruments 74,02 51,04 53,05 34,21 73,05 51,31 
Stock-Yogo weak ID test (critical val 10% max IV size) 16,38 19,93 16,38 19,93 16,38 19,93 
Partial R-squared 0,28 0,3 0,23 0,25 0,28 0,3 
P value Anderson-Rubin F-test 0,04 0,14 0,28 0,32 0,65 0,75 
P value Anderson-Rubin chi-sq test 0,04 0,12 0,27 0,3 0,64 0,74 
P value J-statistic   0,28   0,21   0,51 
N. Observations 467 467 413 413 467 467 
N. Country-sector Effects 86 86 76 76 86 86 
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Table 14: Strong PH - TFP IV Regression - Second Stage Results    
  TFP level TFP growth 

  (1) (2) (3) (4) (5) (6) 

PACE-inst(-1) -0.020* -0.014* - - -0,003 -0,004 
  (0,01) (0,01)     (0,01) (0,01) 
PACE-inst(-2) - - -0,013 -0,005 - - 
      (0,01) (0,01)     

TFPG-frontier - - - - 0.241** 0.245*** 
          (0,10) (0,09) 
TFP-gap(-1) -0,007 -0,008 -0,012 -0,019 0,007 0,007 
  (0,02) (0,02) (0,03) (0,02) (0,01) (0,01) 

VA(-1) - - - - 
-

0.084*** 
-

0.085*** 
          (0,03) (0,03) 
IMP(-1) -0,014 -0,022 -0,041 -0,072 -0,018 -0,017 
  (0,06) (0,06) (0,06) (0,06) (0,03) (0,03) 
EXP(-1) -0,012 -0,001 -0,02 0,001 0,036 0,035 
  (0,05) (0,05) (0,05) (0,05) (0,03) (0,02) 
DR(-1) 0,027 0,029 0.136* 0.148* 0,035 0,035 
  (0,04) (0,04) (0,08) (0,08) (0,04) (0,04) 
BR(-1) -0,012 -0,023 -0,13 -0,153 -0,055 -0,054 
  (0,08) (0,08) (0,10) (0,10) (0,05) (0,05) 

N. Observations 467 467 413 413 467 467 
N. Country-sector Effects 86 86 76 76 86 86 
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